Evaluation of Latent Fingerprints for drug screening in a social care setting

Caroline Pollard¹, Claudia Sievers², Natasha Knight³, Paul Yates², Parmjit Chalal³, Kim Wolff¹

¹ Analytical, Environmental & Forensic Science, King's College London, SE1 9NH

² 14-17 Evolution Business Park, Milton Road, Impington, Cambridge, CB24 9NG

³Harrow Children's Services, Station Road, Harrow, HA1 2XY

BACKGROUND

- Sweat in latent fingerprints (LFPs) deposits have shown to contain illicit drugs and their metabolites¹
- Quantitative mass spectrometry techniques paired with qualitative point-of-care tests (POCT) have been utilised to detect cocaine, opiates and amphetamines²
- POCT require minimum sample preparation allowing a rapid turnaround time³
- This pilot study trialled a POCT utilising LFPs in a social

care setting, where quick and confidential screening tests are required

METHODS

Samples collected:

- 1) 1 natural LFP → screened for Amphetamine, Opiates and Cocaine via Intelligent Fingerprinting screening test
- 2) 1 mL of Oral Fluid (OF) via Quantisal kit

 Both screening and confirmation cartridge were from Intelligent Fingerprinting (DOA114 and DOA150)

RESULTS: Demographics

- 36 subjects were tested:
 - 53% female
 - Mean age 36 ± 11 years (range 17 36 years)
 - Main ethnicity was white (61%)
- Alcohol and illicit drug use:
 - Two-thirds smoked, of which 21% smoked <5 a day

and Opiates

RESULTS: Confirmation

Table 1 - Drug and metabolite concentrations in 10 LFP confirmation samples analysed via UPLC-MS/MS (n = 32).

Drug/metabolite	No. of samples	Median quantity (pg/print)	Quantity range (pg/print)
Benzoylecgonine	22	90	11 - 1485
Cocaine	22	1400	177 – 6260
Morphine	3	139	35 – 177
6-MAM	5	194	48 -1524
Codeine	2	222	38 – 406

Table 2 - Drug and metabolite concentrations in OF confirmation samples analysed via UPLC-MS/MS (n = 130).

Drug/metabolite	No. of samples	Median concentration (ng/mL)	Concentration range (ng/mL)
Benzoylecgonine	5	18	8 - 50
Cocaine	12	14.5	8 - 207
6-MAM	6	2.5	2.5 - 49
Dihydrocodeine	1	83	83
Codeine	4	65	26 – 652
THC	19	26	2 – 150
Negative		89	

- 39% of subjects stated alcohol consumption (14% drink > 10 units)
- Cocaine was the most frequently used drug in the last month (14%) followed by cannabis (11%)

CONCLUSIONS

- Overall, the LFP POCT successfully detected cocaine and opiates in a social care setting
- Cocaine was the most dominant analyte in LFP screening test and both confirmation samples
- Additionally, THC was observed in OF
- Factors affecting results included: drug's physiochemical properties, time of drug administration and the dose consumed \rightarrow social workers should enquire about dose and time of administration to understand results

1. Leggett R, et al.: Angew Chem Int Ed Engl 2007;46:4100-4103.

2. Hudson M, et al.: J Anal Toxicol 2018

3. George C, et al.; in Wolff K (ed) Detection of Drug Misuse: Biomarkers, Analytical Advances and Interpretation. UK, The Royal Society of Chemistry, 2017, vol 1, pp 23-45.

The authors declare that there is no conflict of interest